Roll No.

[Total No. of Pages 4

# 3E1495

B.Tech. IIIrd Semester (Main/Back) Examination, Feb. - 2011 Electronics & Communication Engineering 3EC5 Electronic Materials and Processes

Time: 3 Hours

Maximum Marks: 80

Min. Passing Marks: 24

### Instructions to Candidates:

Attempt overall **five** questions, selecting **one** question from **each** unit. Schematic diagrams must be shown wherever necessary. Any data you feel missing may suitably be assumed and stated clearly.

### Unit - I

1. a) Prove the Clausius - Mosotti relation

(8)

$$\frac{{\epsilon_r}^* - 1}{{\epsilon_r}^* + 2} = \frac{1}{3{\epsilon_0}} N(\alpha_e + \alpha_i)$$

approximate this relation at IR (infra red) region.

b) Explain the interfacial polarization and its dynamic response. Draw its frequency spectra and dipolar relaxation. (8)

### OR

a) Derive the temperature - independent condition.

(4)

$$\frac{1}{L} \frac{dL}{dT} + \frac{1}{C} \frac{dC}{dT} = 0$$

For a resonant tank circuit.

- b) For a solid contains  $5 \times 10^{28}$  atoms/m<sup>3</sup> with polarizability  $2 \times 10^{-38}$  farad m<sup>2</sup>. Find the strength ratio of internal field to external applied field for corentz distribution. (6)
- c) Draw the polarization with applied field for

(3+3=6)

- i) Ferro Electric and
- ii) Antiferro Electric Materials.

### Unit - II

2. a) Draw the susceptibility with temperature for Dia, Para, ferro, ferri and antiferromagnetic materials. (5×2=10)

b) The Magnetic field strength in a piece of copper is 10<sup>6</sup> ampere m<sup>-1</sup>. Given that the Magnetic susceptibility of copper is -0.5×10<sup>-5</sup>, find the flux density and the Magnetization in the copper. (6)

OR

a) Define

 $(3 \times 4 = 12)$ 

- i) initial permeability
- ii) remenant magnetization
- iii) coercive force
- iv) saturation magnetization

On BH loop for a soft magnetic material. Compare their values from a Hard magnetic material.

b) Explain the Domain theory, Domain growth under magnetization and domain walls for a ferromagnetic materials. (4)

### Unit - III

3. a) Write three difference for each

 $(3 \times 4 = 12)$ 

- i) Degenerate and Non-degenerate semiconductor material.
- ii) GaAs and Si semiconductor.
- iii) EGS (Electronic Grade Silicon) and MGS (Mechanical Grade Silicon).
- iv) Direct and Indirect Band gap semiconductors.
- b) Derive the continuity equation for P-type semiconductor that is illuminated and open-circuit. (4)

### OR

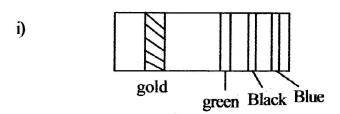
a) A compound semiconductor is given by  $\begin{pmatrix} Al & Ga & As \\ 1-x & x & y \end{pmatrix}$ .  $\begin{pmatrix} P \\ 1-y \end{pmatrix}$  then find the

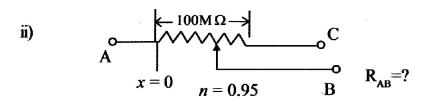
value of x & y for give the effective Bandgap Eg = 3.8ev. Given that Bandgap of  $AlAs \rightarrow 3.8 \ ev \ GaAs \rightarrow 1.4 \ ev$ 

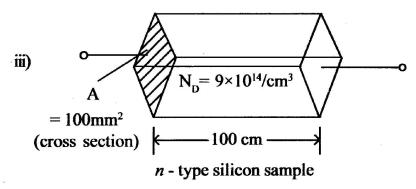
$$P \rightarrow 4.2 \ ev.$$

Also find the corresponding wavelength for which it responds maximum.

(2+6=8)


|      |    | Unit - IV                                                                                                 |                     |
|------|----|-----------------------------------------------------------------------------------------------------------|---------------------|
| 4.   | a) | Define                                                                                                    | $(5 \times 2 = 10)$ |
|      |    | i) Mean free path                                                                                         | ,,                  |
|      |    | ii) Relaxation time                                                                                       |                     |
|      |    | iii) Fermi velocity                                                                                       |                     |
|      |    | iv) Scattering points                                                                                     |                     |
|      |    | v) Drift velocity for electrons                                                                           |                     |
|      | b) | Derive the relation and                                                                                   | (6)                 |
|      |    | $\sigma(w) = \frac{\sigma_0}{1 + W^2 \tau^2}$                                                             |                     |
|      |    | for metals, draw $\sigma(w)$ with frequency.                                                              |                     |
|      |    | OR                                                                                                        |                     |
|      | a) | Define the following conduction phenomena                                                                 | (3×3=9)             |
|      |    | i) Hopping conduction                                                                                     |                     |
|      |    | ii) Diffusion conduction                                                                                  |                     |
|      |    | iii) Drift conduction.                                                                                    |                     |
|      |    | Also state the conditions for which above phenomena applicable                                            | e.                  |
|      | b) | Write four differences between Type I and Type II semiconductor basis of BCC theory of superconductivity. | or. Write the (7)   |
|      |    | Unit - V                                                                                                  |                     |
| 5.   | a) | Write the name of Mostly used capacitors used for the range                                               | $(4\times2=8)$      |
|      |    | i) below picofarrad                                                                                       |                     |
|      |    | ii) nano - picofarrad                                                                                     |                     |
|      |    | iii) microfarrad                                                                                          |                     |
|      |    | iv) millifarrad.                                                                                          |                     |
|      |    | Also write their power range and mechanical structures.                                                   | _                   |
| 3E14 | 05 | (3)                                                                                                       | •                   |


b) How control or, depends the purity / defects on


 $(4 \times 2 = 8)$ 

## b) Calculate the value of resistors

(2+2+4=8)







having  $n_i = 1.5 \times 10^{10} / \text{cm}^3$ 

$$K_n = 1400 \ H_p = 300 \ \frac{M^2 \cdot \text{volt}}{\text{Secs.}}$$

OR

Write short notes on any four:

 $(4 \times 4 = 16)$ 

- a) SOI
- b) Ferrite/hexaferrite core with silicon doping
- c) Laminated transformer core
- d) Double layer PCB
- e) Variable inductors.